Conformational flexibility and allosteric regulation of cathepsin K

Author:

Novinec Marko12,Kovačič Lidija3,Lenarčič Brigita24,Baici Antonio1

Affiliation:

1. Department of Biochemistry, University of Zürich, 8057 Zürich, Switzerland

2. Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia

3. Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia

4. Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia

Abstract

The human cysteine peptidase cathepsin K is a key enzyme in bone homoeostasis and other physiological functions. In the present study we investigate the mechanism of cathepsin K action at physiological plasma pH and its regulation by modifiers that bind outside of the active site. We show that at physiological plasma pH the enzyme fluctuates between multiple conformations that are differently susceptible to macromolecular inhibitors and can be manipulated by varying the ionic strength of the medium. The behaviour of the enzyme in vitro can be described by the presence of two discrete conformations with distinctive kinetic properties and different susceptibility to inhibition by the substrate benzyloxycarbonyl-Phe-Arg-7-amino-4-methylcoumarin. We identify and characterize sulfated glycosaminoglycans as natural allosteric modifiers of cathepsin K that exploit the conformational flexibility of the enzyme to regulate its activity and stability against autoproteolysis. All sulfated glycosaminoglycans act as non-essential activators in assays using low-molecular-mass substrates. Chondroitin sulfate and dermatan sulfate bind at one site on the enzyme, whereas heparin binds at an additional site and has a strongly stabilizing effect that is unique among human glycosaminoglycans. All glycosaminoglycans stimulate the elastinolytic activity of cathepsin K at physiological plasma pH, but only heparin also increases the collagenolytic activity of the enzyme under these conditions. Altogether these results provide novel insight into the mechanism of cathepsin K function at the molecular level and its regulation in the extracellular space.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3