Identification and characterization of a strict and a promiscuous N-acetylglucosamine-1-P uridylyltransferase in Arabidopsis

Author:

Yang Ting12,Echols Merritt2,Martin Andy2,Bar-Peled Maor23

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, U.S.A.

2. Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, U.S.A.

3. Department of Plant Biology, University of Georgia, Athens, GA 30602, U.S.A.

Abstract

UDP-GlcNAc is an essential precursor for glycoprotein and glycolipid synthesis. In the present study, a functional nucleotidyltransferase gene from Arabidopsis encoding a 58.3 kDa GlcNAc1pUT-1 (N-acetylglucosamine-1-phosphate uridylyltransferase) was identified. In the forward reaction the enzyme catalyses the formation of UDP-N-acetylglucosamine and PPi from the respective monosaccharide 1-phosphate and UTP. The enzyme can utilize the 4-epimer UDP-GalNAc as a substrate as well. The enzyme requires divalent ions (Mg2+ or Mn2+) for activity and is highly active between pH 6.5 and 8.0, and at 30–37 °C. The apparent Km values for the forward reaction were 337 μM (GlcNAc-1-P) and 295 μM (UTP) respectively. Another GlcNAc1pUT-2, which shares 86% amino acid sequence identity with GlcNAc1pUT-1, was found to convert, in addition to GlcNAc-1-P and GalNAc-1-P, Glc-1-P into corresponding UDP-sugars, suggesting that subtle changes in the UT family cause different substrate specificities. A three-dimensional protein structure model using the human AGX1 as template showed a conserved catalytic fold and helped identify key conserved motifs, despite the high sequence divergence. The identification of these strict and promiscuous gene products open a window to indentify new roles of amino sugar metabolism in plants and specifically their role as signalling molecules. The ability of GlcNAc1pUT-2 to utilize three different substrates may provide further understanding as to why biological systems have plasticity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference29 articles.

1. N-Glycans;Stanley,2008

2. GPI-anchor synthesis: Ras takes charge;Hancock;Dev. Cell,2004

3. Glycosphingolipids;Schnaar,2008

4. Lipopolysaccharide endotoxins;Raetz;Annu. Rev. Biochem.,2002

5. O-GlcNAc transferase is in a functional complex with protein phosphatase 1 catalytic subunits;Wells;J. Biol. Chem.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3