Nuclear receptor corepressor-dependent repression of peroxisome-proliferator-activated receptor δ-mediated transactivation

Author:

KROGSDAM Anne-M.1,NIELSEN Curt A.F.1,NEVE Søren1,HOLST Dorte1,HELLEDIE Torben1,THOMSEN Bo2,BENDIXEN Christian2,MANDRUP Susanne1,KRISTIANSEN Karsten1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense University, Campusvej 55, DK-5230 Odense M, Denmark

2. Department of Animal Breeding and Genetics, Danish Institute of Agricultural Sciences, P.O. Box 50, 8830 Tjele, Denmark

Abstract

The nuclear receptor corepressor (NCoR) was isolated as a peroxisome-proliferator-activated receptor (PPAR) δ interacting protein using the yeast two-hybrid system. NCoR interacted strongly with the ligand-binding domain of PPARδ, whereas interactions with the ligand-binding domains of PPARγ and PPARα were significantly weaker. PPAR—NCoR interactions were antagonized by ligands in the two-hybrid system, but were ligand-insensitive in in vitro pull-down assays. Interaction between PPARδ and NCoR was unaffected by coexpression of retinoid X receptor (RXR) α. The PPARδ—RXRα heterodimer bound to an acyl-CoA oxidase (ACO)-type peroxisome-proliferator response element recruited a glutathione S-transferase—NCoR fusion protein in a ligand-independent manner. Contrasting with most other nuclear receptors, PPARδ was found to interact equally well with interaction domains I and II of NCoR. In transient transfection experiments, NCoR and the related silencing mediator for retinoid and thyroid hormone receptor (SMRT) were shown to exert a marked dose-dependent repression of ligand-induced PPARδ-mediated transactivation; in addition, transactivation induced by the cAMP-elevating agent forskolin was efficiently reduced to basal levels by NCoR as well as SMRT coexpression. Our results suggest that the transactivation potential of liganded PPARδ can be fine-tuned by interaction with NCoR and SMRT in a manner determined by the expression levels of corepressors and coactivators.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3