Endothelial cell oxidative stress in diabetes: a key driver of cardiovascular complications?

Author:

Shaw Andrew1,Doherty Mary K.1,Mutch Nicola J.2,MacRury Sandra M.1,Megson Ian L.1

Affiliation:

1. Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness IV2 3JH, U.K.

2. School of Medicine and Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K.

Abstract

Atherothrombotic disease is a well-recognized complication of diabetes and is a major contributor to the high morbidity and mortality associated with diabetes. Although there is substantial evidence linking diabetes with cardiovascular disease, the specific effect of hyper- (or hypo-) glycaemia is less well understood. The present review focuses on the impact that glycaemic dysregulation has on respiratory function and ROS (reactive oxygen species) generation in the endothelial cells that are critical in preventing several key steps in the atherothrombotic process. Endothelial cells are particularly susceptible to ROS-mediated dysfunction not only because of reduced cell viability and increased senescence, but also because one of the major endothelium-derived factors that help to protect against atherosclerosis, nitric oxide, is rapidly deactivated by superoxide radicals.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3