Protein moonlighting: a new factor in biology and medicine

Author:

Henderson Brian1,Martin Andrew C. R.2

Affiliation:

1. Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, U.K.

2. Biomolecular Structure and Modelling Unit, Institute of Structural and Molecular Biology, Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K.

Abstract

The phenomenon of protein moonlighting was discovered in the 1980s and 1990s, and the current definition of what constitutes a moonlighting protein was provided at the end of the 1990s. Since this time, several hundred moonlighting proteins have been identified in all three domains of life, and the rate of discovery is accelerating as the importance of protein moonlighting in biology and medicine becomes apparent. The recent re-evaluation of the number of protein-coding genes in the human genome (approximately 19000) is one reason for believing that protein moonlighting may be a more general phenomenon than the current number of moonlighting proteins would suggest, and preliminary studies of the proportion of proteins that moonlight would concur with this hypothesis. Protein moonlighting could be one way of explaining the seemingly small number of proteins that are encoded in the human genome. It is emerging that moonlighting proteins can exhibit novel biological functions, thus extending the range of the human functional proteome. The several hundred moonlighting proteins so far discovered play important roles in many aspects of biology. For example, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), heat-shock protein 60 (Hsp60) and tRNA synthetases play a wide range of biological roles in eukaryotic cells, and a growing number of eukaryotic moonlighting proteins are recognized to play important roles in physiological processes such as sperm capacitation, implantation, immune regulation in pregnancy, blood coagulation, vascular regeneration and control of inflammation. The dark side of protein moonlighting finds a range of moonlighting proteins playing roles in various human diseases including cancer, cardiovascular disease, HIV and cystic fibrosis. However, some moonlighting proteins are being tested for their therapeutic potential, including immunoglobulin heavy-chain-binding protein (BiP), for rheumatoid arthritis, and Hsp90 for wound healing. In addition, it has emerged over the last 20 years that a large number of bacterial moonlighting proteins play important roles in bacteria–host interactions as virulence factors and are therefore potential therapeutic targets in bacterial infections. So as we progress in the 21st Century, it is likely that moonlighting proteins will be seen to play an increasingly important role in biology and medicine. It is hoped that some of the major unanswered questions, such as the mechanism of evolution of protein moonlighting, the structural biology of moonlighting proteins and their role in the systems biology of cellular systems can be addressed during this period.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3