Sulphation of proteochondroitin and 4-methylumbelliferyl β-d-xyloside-chondroitin formed by mouse mastocytoma cells cultured in sulphate-deficient medium

Author:

Silbert J E1,Sugumaran G1,Cogburn J N1

Affiliation:

1. Connective Tissue Research Laboratory, Department of Veterans Affairs Medical Center, Bedford, MA, U.S.A. and the Department of Medicine, Harvard Medical School, Boston, MA, U.S.A.

Abstract

Mouse mastocytoma cells were cultured in medium containing [3H]GlcN and concentrations of [35S]sulphate varying from 0.01 to 0.5 mM. Intracellular [35S]sulphate incorporation increased severalfold from the lowest concentrations, reaching a maximum at 0.1-0.2 mM, whereas incorporation of [3H]hexosamine remained constant at all sulphate concentrations. Proteo[3H]-chondroitin [35S]sulphate was isolated and incubated with chondroitin ABC lyase, yielding 35S-labelled and/or 3H-labelled delta Di-0S and delta Di-4S disaccharide products. The increasing percentage of delta Di-4S was consistent with the increasing sulphate incorporation at each higher [35S]sulphate concentration. Examination of proteochondroitin [35S]sulphate size by Sepharose CL-6B chromatography indicated a range consistent with various numbers of glycosaminoglycan chains on the protease-resistant serglycin core protein. Alkali-cleaved chondroitin [35S]sulphate products indicated similar size distributions at all sulphate concentrations with no indication of preferential sulphation being related to smaller or larger size. DEAE-cellulose chromatography of [3H]chondroitin [35S]sulphate glycosaminoglycans indicated a random undersulphation as [35S]sulphate concentration was lowered. Addition of 4-methylumbelliferyl beta-D-xyloside to the cultures resulted in a 2-2.5-fold stimulation of [3H]chondroitin [35S]sulphate synthesis with formation of beta-xyloside-[3H]chondroitin [35S]sulphate which was much smaller, as estimated by Sepharose CL-6B chromatography, than the decreased amount of [3H]chondroitin [35S]sulphate derived from proteo[3H]chondroitin [35S]sulphate. Much higher concentrations of sulphate were necessary to produce sulphation of the beta-xyloside-[3H]chondroitin comparable with that of proteo[3H]-chondroitin, as indicated by chondroitin ABC lyase products and DEAE-cellulose chromatography. The specific radioactivities of the [3H]GalN in the proteo[3H]chondroitin [35S]sulphate and beta-xyloside-[3H]chondroitin [35S]sulphate were calculated from the 3H and 35S c.p.m. of isolated dual-labelled delta Di-4S from each, and indicated that the presence of the beta-xyloside resulted in a dilution of the [3H]GlcN by endogenous GlcN that was 4 times higher than that of cultures lacking the beta-xyloside. The higher sulphate concentrations needed for sulphation of beta-xyloside-chondroitin suggests that the membrane-bound nature of the proteochondroitin acceptor in juxtaposition to a chondroitin sulphate-synthesizing enzyme complex effectively reduces the apparent Km for adenosine 3′-phosphate 5′-phosphosulphate.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Principles of Therapy for Lameness;Adams and Stashak's Lameness in Horses;2020-05-12

2. Glycosaminoglycan metabolism before molecular biology: reminiscences of our early work;Glycoconjugate Journal;2009-09-02

3. Investigating the Elusive Mechanism of Glycosaminoglycan Biosynthesis;Journal of Biological Chemistry;2009-09

4. Osteoarthritis;Handbook of Clinical Nutrition and Aging;2009

5. Electrophoretic separation and characterization of urinary glycosaminoglycans and their roles in urolithiasis;Carbohydrate Research;2007-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3