An inhibitory role for polyamines in protein kinase C activation and insulin secretion in mouse pancreatic islets

Author:

Thams P,Capito K,Hedeskov C J

Abstract

The occurrence and function of polyamines in protein kinase C activation and insulin secretion in mouse pancreatic islets were studied. Determination of polyamines in mouse islets revealed 0.9 +/- 0.3 (mean +/- S.E.M., n = 6) pmol of putrescine, 11.7 +/- 3.2 (8) pmol of spermidine and 3.7 +/- 0.6 (8) pmol of spermine per islet, corresponding to intracellular concentrations of 0.3-0.5 mM-putrescine, 3.9-5.9 mM-spermidine and 1.2-1.9 mM-spermine in mouse islets. Stimulation of insulin secretion by glucose, the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) or the sulphonylurea glibenclamide did not affect these polyamine contents. In accordance with a role for protein kinase C in insulin secretion, TPA stimulated both protein kinase C activity and insulin secretion. Stimulation of insulin secretion by TPA was dependent on a non-stimulatory concentration of glucose and was further potentiated by stimulatory concentrations of glucose, glibenclamide or 3-isobutyl-1-methylxanthine, suggesting that protein kinase C activation, Ca2+ mobilization and cyclic AMP accumulation are all needed for full secretory response of mouse islets. Spermidine (5 mM) and spermine (1.5 mM) at concentrations found in islets inhibited protein kinase C stimulated by TPA + phosphatidylserine by 55% and 45% respectively. Putrescine (0.5 mM) was without effect, but inhibited the enzyme at higher concentrations (2-10 mM). Inhibition of protein kinase C by polyamines showed competition with Ca2+, and Ca2+ influx in response to glucose or glibenclamide prevented inhibition of insulin secretion by exogenous polyamines at concentrations where they did not affect glucose oxidation. It is suggested that inhibition of protein kinase C by polyamines may be of significance for regulation of insulin secretion in vivo and that Ca2+ influx may function by displacing inhibitory polyamines bound to phosphatidylserine in membranes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3