Effect of basic polycations and proteins on purified insulin receptor. Insulin-independent activation of the receptor tyrosine-specific protein kinase by poly(l-lysine)

Author:

Fujita-Yamaguchi Y1,Sacks D B2,McDonald J M2,Sahal D1,Kathuria S1

Affiliation:

1. Department of Molecular Genetics, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010.

2. Departments of Pathology and Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, U.S.A.

Abstract

Since the studies on tyrosine phosphorylation of calmodulin by the insulin receptor kinase in vitro suggested that protamine and poly(L-lysine) may activate phosphorylation of the receptor beta subunit [Sacks & McDonald (1988) J. Biol. Chem. 263, 2377-2383], we examined the effects of a variety of basic polycations/proteins and polyamines on insulin receptor kinase activity. The insulin receptor purified from human placental membranes was incubated with each basic polycation/protein or polyamine and assayed for tyrosine-specific protein kinase activity by measuring 32P incorporation into the src-related peptide. At a concentration of 1 microM, poly(L-lysine) and poly(L-ornithine) markedly stimulated kinase activity, whereas poly(L-arginine) and histones H1 and H2B inhibited insulin receptor kinase. In contrast, at a concentration of 1 mM, three polyamines (spermine, spermidine and putrescine) did not alter kinase activity. Poly(L-lysine) and poly(L-ornithine) stimulated the insulin receptor kinase by 5-10-fold at concentrations of 0.1-1 microM. Protamine sulphate also showed a significant stimulatory effect at a concentration of 100 microM. Preincubation of the receptor with poly(L-lysine) or poly(L-ornithine) for 20-60 min resulted in maximal kinase activation. Poly(L-lysine), the most effective activator of the receptor kinase, was used to characterize further the mechanisms of the kinase activation. Poly(L-lysine) activates the insulin receptor kinase by increasing the Vmax. without changing the Km. Poly(L-lysine) markedly stimulates the kinase activity of insulin receptor preparations that have lost both basal kinase activity and the ability to be stimulated by insulin. Insulin and poly(L-lysine) also differed in their ability to stimulate the kinase activity of prephosphorylated receptors. Prephosphorylation of the receptors did not affect the stimulation of the kinase by insulin. In contrast, prephosphorylation of receptors resulted in a markedly enhanced ability of poly(L-lysine) to stimulate kinase activity. These studies suggest that the mechanisms by which poly(L-lysine) and insulin activate the kinase are different. In conjunction with other additional evidence, it is suggested that poly(L-lysine) interacts directly with the beta-subunit of the receptor, thereby activating the receptor kinase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3