The potential function of steroid sulphatase activity in steroid production and steroidogenic acute regulatory protein expression

Author:

SUGAWARA Teruo1,FUJIMOTO Seiichiro2

Affiliation:

1. Department of Biochemistry, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo 060-8638, Japan

2. Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Kita-ku, Kita 15, Nishi 7, Sapporo 060-8638, Japan

Abstract

The first step in the biosynthesis of steroid hormones is conversion of cholesterol into pregnenolone. StAR (steroidogenic acute regulatory) protein plays a crucial role in the intra-mitochondrial movement of cholesterol. STS (steroid sulphatase), which is present ubiquitously in mammalian tissues, including the placenta, adrenal gland, testis and ovary, desulphates a number of 3β-hydroxysteroid sulphates, including cholesterol sulphate. The present study was designed to examine the effect of STS on StAR protein synthesis and steroidogenesis in cells. Steroidogenic activities of COS-1 cells that had been co-transfected with a vector for the cholesterol P450scc (cytochrome P450 side-chain-cleavage enzyme) system, named F2, a StAR expression vector (pStAR), and an STS expression vector (pSTS) were assayed. Whole-cell extracts were subjected to SDS/PAGE and then to Western blot analysis. pSTS co-expressed in COS-1 cells with F2 and pStAR increased pregnenolone synthesis 2-fold compared with that of co-expression with F2 and pStAR. Western blot analysis using COS-1 cells that had been co-transfected with pSTS, F2 and pStAR revealed that StAR protein levels increased, whereas STS and P450scc protein levels did not change. The amount of StAR protein translation products increased when pSTS was added to an in vitro transcription–translation reaction mixture. Pulse–chase experiments demonstrated that the 37 kDa StAR pre-protein disappeared significantly (P<0.01) more slowly in COS-1 cells that had been transfected with pSTS than in COS-1 cells that had not been transfected with pSTS. The increase in StAR protein level is not a result of an increase in StAR gene expression, but is a result of both an increase in translation and a longer half-life of the 37 kDa pre-StAR protein. In conclusion, STS increases StAR protein expression level and stimulates steroid production.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3