Sensing hypoxia in the carotid body: from stimulus to response

Author:

Kumar Prem1

Affiliation:

1. Department of Physiology, The Medical School, University of Birmingham, Birmingham B15 2TT, U.K.

Abstract

The carotid body is a peripheral sensory organ that can transduce modest falls in the arterial PO2 (partial pressure of oxygen) into a neural signal that provides the afferent limb of a set of stereotypic cardiorespiratory reflexes that are graded according to the intensity of the stimulus. The stimulus sensed is tissue PO2 and this can be estimated to be around 50 mmHg during arterial normoxia, falling to between 10–40 mmHg during hypoxia. The chemoafferent hypoxia stimulus-response curve is exponential, rising in discharge frequency with falling PO2, and with no absolute threshold apparent in hyperoxia. Although the oxygen sensor has not been definitely identified, it is believed to reside within type I cells of the carotid body, and presently two major hypotheses have been put forward to account for the sensing mechanism. The first relies upon alterations in the cell energy status that is sensed by the cytosolic enzyme AMPK (AMP-activated protein kinase) subsequent to hypoxia-induced increases in the cellular AMP/ATP ratio during hypoxia. AMPK is localized close to the plasma membrane and its activation can inhibit both large conductance, calcium-activated potassium (BK) and background, TASK-like potassium channels, inducing membrane depolarization, voltage-gated calcium entry and neurosecretion of a range of transmitter and modulator substances, including catecholamines, ATP and acetylcholine. The alternative hypothesis considers a role for haemoxygenase-2, which uses oxygen as a substrate and may act to gate an associated BK channel through the action of its products, carbon monoxide and possibly haem. It is likely however, that these and other hypotheses of oxygen transduction are not mutually exclusive and that each plays a role, via its own particular sensitivity, in shaping the full response of this organ between hyperoxia and anoxia.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3