Affiliation:
1. Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, U.K.
Abstract
Low cellular oxygenation (hypoxia) represents a significant threat to the viability of affected tissues. Multicellular organisms have evolved a highly conserved signalling pathway that directs many of the changes in gene expression that underpin physiological oxygen homoeostasis. Oxygen-sensing enzymes in this pathway control the activity of the HIF (hypoxia-inducible factor) transcription factor by the direct incorporation of molecular oxygen into the post-translational hydroxylation of specific residues. This represents the canonical hypoxia signalling pathway which regulates a plethora of genes involved in adaptation to hypoxia. The HIF hydroxylases have been identified in other biological contexts, consistent with the possibility that they have other substrates. Furthermore, several intracellular proteins have been demonstrated, directly or indirectly, to be hydroxylated, although the protein hydroxylases responsible have yet to be identified. This chapter will summarize what is currently known about the canonical HIF hydroxylase signalling pathway and will speculate on the existence of other oxygen-sensing enzymes and the role they may play in signalling hypoxia through other pathways.
Subject
Molecular Biology,Biochemistry
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献