Incorporation of carbon from photosynthetic products into 2-carboxyarabinitol-1-phosphate and 2-carboxyarabinitol

Author:

Andralojc P J1,Dawson G W1,Parry M A J1,Keys A J1

Affiliation:

1. Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Hertfordshire, AL5 2JQ, U.K.

Abstract

The synthesis of 2-carboxy-D-arabinitol-1-phosphate (CA1P), the naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase, was studied in leaves of the French bean Phaseolus vulgaris, L. Leaves were supplied with air containing 14CO2 in the light then the plants were transferred to normal air in the light or in the dark. Leaf samples were frozen in liquid nitrogen, ground to a powder and extracted with acid. Lipids, pigments and cations were removed from the extract and CA1P and 2-carboxy-D-arabinitol (CA) recovered by anion exchange chromatography. The CA1P was further purified by its specific binding to purified ribulose-1,5-bisphosphate carboxylase/oxygenase. CA and CA1P were identified by chromatographic properties and n.m.r. spectra. When plants were kept for 15 h in darkness after exposure to 14CO2, up to 2.2% and 5.5% of the radioactivity in the extracts was present in CA1P and CA, respectively. The most radioactivity appeared in these compounds when photosynthesis from 14CO2 took place at low photosynthetic photon flux density (PPFD). Under such conditions, radioactivity was detected in CA1P after only 10 min. During subsequent exposure to normal air (12CO2) at low PPFD the amount of radioactivity in CA1P remained almost constant for 6 h; in darkness the rate of incorporation of radioactivity into CA1P reached a maximum after 2 h and the radioactivity was still increasing 6 h later. At low PPFD, the amount of CA1P in the leaves reached a maximum after 2 h. In darkness, the amount of CA1P began to increase rapidly after a lag of almost 1 h, well ahead of the increase in radioactivity in CA1P.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3