The ubiquitin–proteasome system and cancer

Author:

Devoy Anny1,Soane Tim1,Welchman Rebecca1,Mayer R. John1

Affiliation:

1. School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham NG7 2UH, U.K.

Abstract

The ubiquitin proteasome system (UPS) has emerged from obscurity to be seen as a major player in all regulatory processes in the cell. The concentrations of key proteins in diverse regulatory pathways are controlled by post-translational ubiquitination and degradation by the 26 S proteasome. These regulatory cascades include growth-factor-controlled signal-transduction pathways and multiple points in the cell cycle. The cell cycle is orchestrated by a combination of cyclin-dependent kinases, kinase inhibitors and protein phosphorylation, together with the timely and specific degradation of cyclins and kinase inhibitors at critical points in the cell cycle by the UPS. These processes provide the irreversibility needed for movement of the cycle through gap 1 (G1), DNA synthesis (S), gap 2 (G2) and mitosis (M). The molecular events include cell-size control, DNA replication, DNA repair, chromosomal rearrangements and cell division. It is doubtful whether these events could be achieved without the temporally and spatially regulated combination of protein phosphorylation and ubiquitin-dependent degradation of key cell-cycle regulatory proteins. The oncogenic transformation of cells is a multistep process that can be triggered by mutation of genes for proteins involved in regulatory processes from the cell surface to the nucleus. Since the UPS has critical functions at all these levels of control, it is to be expected that UPS activities will be central to cell transformation and cancer progression.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Reference26 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3