Significant immunomodulatory effects of Pseudomonas aeruginosa quorum-sensing signal molecules: possible link in human sepsis

Author:

Boontham Pisake1,Robins Adrian2,Chandran Palanichamy1,Pritchard David3,Cámara Miguel4,Williams Paul4,Chuthapisith Suebwong1,McKechnie Alasdair1,Rowlands Brian J.1,Eremin Oleg1

Affiliation:

1. Division of Surgery, University of Nottingham, Nottingham NG7 2UH, U.K.

2. Division of Immunology, University of Nottingham, Nottingham NG7 2UH, U.K.

3. School of Pharmacy, University of Nottingham, Nottingham NG7 2UH, U.K.

4. Institute of Infection, Immunity and Inflammation, University of Nottingham, Nottingham NG7 2UH, U.K.

Abstract

Pathogenic bacteria use quorum-sensing signal molecules to co-ordinate the expression of virulence genes. Animal-based studies have demonstrated the immunomodulatory effects of quorum-sensing signal molecules. In the present study, we have examined the impact of these molecules on normal human immune function in vitro and compared this with immune changes in patients with sepsis where quorum-sensing signal molecules were detected in the sera of patients. Quorum-sensing signal molecules inhibited normal dendritic cell and T-cell activation and proliferation, and down-regulated the expression of co-stimulatory molecules on dendritic cells; in MLDCRs (mixed lymphocyte dendritic cell reactions), secretion of IL (interleukin)-4 and IL-10 was enhanced, but TNF-α (tumour necrosis factor-α), IFN-γ (interferon-γ) and IL-6 was reduced. Quorum-sensing signal molecules induced apoptosis in dendritic cells and CD4+ cells, but not CD8+ cells. Dendritic cells from patients with sepsis were depleted and ex vivo showed defective expression of co-stimulatory molecules and dysfunctional stimulation of allogeneic T-lymphocytes. Enhanced apoptosis of dendritic cells and differential CD4+ Th1/Th2 (T-helper 1/2) cell apoptotic rate, and modified Th1/Th2 cell cytokine profiles in MLDCRs were also demonstrated in patients with sepsis. The pattern of immunological changes in patients with sepsis mirrors the effects of quorum-sensing signal molecules on responses of immune cells from normal individuals in vitro, suggesting that quorum-sensing signal molecules should be investigated further as a cause of immune dysfunction in sepsis.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3