Role of peroxisome-proliferator-activated receptor β/δ (PPARβ/δ) in gastrointestinal tract function and disease

Author:

Peters Jeffrey M.12,Hollingshead Holly E.12,Gonzalez Frank J.3

Affiliation:

1. Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA 16802, U.S.A.

2. Graduate Program in Biochemistry, Microbiology and Molecular Biology, Pennsylvania State University, University Park, PA 16802, U.S.A.

3. Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892 U.S.A.

Abstract

PPARβ/δ (peroxisome-proliferator-activated receptor β/δ) is one of three PPARs in the nuclear hormone receptor superfamily that are collectively involved in the control of lipid homoeostasis among other functions. PPARβ/δ not only acts as a ligand-activated transcription factor, but also affects signal transduction by interacting with other transcription factors such as NF-κB (nuclear factor κB). Constitutive expression of PPARβ/δ in the gastrointestinal tract is very high compared with other tissues and its potential physiological roles in this tissue include homoeostatic regulation of intestinal cell proliferation/differentiation and modulation of inflammation associated with inflammatory bowel disease and colon cancer. Analysis of mouse epithelial cells in the intestine and colon has clearly demonstrated that ligand activation of PPARβ/δ induces terminal differentiation. The PPARβ/δ target genes mediating this effect are currently unknown. Emerging evidence suggests that PPARβ/δ can suppress inflammatory bowel disease through PPARβ/δ-dependent and ligand-independent down-regulation of inflammatory signalling. However, the role of PPARβ/δ in colon carcinogenesis remains controversial, as conflicting evidence suggests that ligand activation of PPARβ/δ can either potentiate or attenuate this disease. In the present review, we summarize the role of PPARβ/δ in gastrointestinal physiology and disease with an emphasis on findings in experimental models using both high-affinity ligands and null-mouse models.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3