Characterization of inflamin, the first member of a new family of snake venom proteins that induces inflammation

Author:

Barnwal Bhaskar1,Kini R. Manjunatha123

Affiliation:

1. Department of Biological Sciences, National University of Singapore, Singapore 117543

2. Department of Biochemistry and Molecular Biophysics, Medical College of Virginia, Virginia Commonwealth University, VA 23298, U.S.A.

3. The School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide 5000, Australia

Abstract

Unlike other sea snakes, Aipysurus eydouxii feeds exclusively on fish eggs. This unusual feeding habit prompted us to search for unique transcripts in their venom glands. In the present study we expressed a novel cysteine-rich secretory protein containing 94 amino acid residues that was identified in its cDNA library. As it induced inflammation and writhing in animals, this protein was named inflamin. It induced two waves of prostanoid production. The first wave peaked at 10 min and 6-oxo PGF1α (prostaglandin F1α) (6-keto PGF1α) was the major product. The second wave, specifically of 6-oxo PGF1α and PGE2 (prostanglandin E2), started after 2 h. In RAW 264.7 cells, COX-1 (cyclo-oxygenase-1) activity showed a transient increase at 10 min and is responsible for the first wave, but its expression was unaffected. COX-2 was induced after 3 h and is responsible for the second wave. Using specific inhibitors, we showed that cPLA2 (calcium-dependent phospholipase A2), and not sPLA2 (secretory phospholipase A2), iPLA2 (calcium-independent phospholipase A2) or DAG (diacylglycerol) lipase, plays a key role in arachidonate release. The cPLA2 activity showed a transient increase of 62% at 10 min; this increase was due to its phosphorylation and not due to an increase in its expression. Thus inflamin, the first member of a new family of snake venom proteins, leads to an increase in the cPLA2 and COX-1 activity resulting in inflammation and pain.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3