Chymotrypsins from the deer (Cervidae) family. Isolation, partial characterization and primary-structure studies of chymotrypsins A and B from both moose (Alces alces) and elk (Cervus elaphus) pancreas

Author:

Lindsay R M1,Stevenson K J1

Affiliation:

1. Biochemistry Group, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N1N4

Abstract

1. An anionic and a cationic chymotrypsin (EC 3.4.21.1) were isolated from the pancreas glands of the moose (Alces alces) and elk (Cervus elaphus). The A and B chymotrypsins from each species were purified to homogeneity by (NH4)2SO4 fractionation, affinity chromatography on 4-phenylbutylamine-Sepharose and ion-exchange chromatography on DEAE- and CM-cellulose. 2. The molecular weight and pH optimum of each chymotrypsin were similar to those of the corresponding ox A and B chymotrypsins. 3. The substrate specificities of the chymotrypsins were investigated by digestion of glucagon and the oxidized B chain of insulin. The primary specificity of each chymotrypsin for aromatic amino acid residues was further established by determining the Km and kcat for the hydrolysis of a number of synthetic amino acid ester substrates. 4. The amino acid composition and total number of residues of moose and elk chymotrypsin A were similar to those of ox chymotrypsin A. An even greater similarity was observed among the B chymotrypsins of the three species. 5. The A chymotrypsins of moose and elk were fragmented to their constituent ‘A’, ‘B’ and ‘C’ polypeptide chains by succinylation (3-carboxypropionylation), reduction and alkylation of the native enzymes. In each case, the two major chains (‘B’ and ‘C’) were separated and isolated. By comparison of the amino acid compositions of moose, elk and oxy ‘B’ and ‘C’ chains, a greater difference was observed among the three A chymotrypsins than was suggested by the amino acid compositions of the native enzymes alone. 6. Peptides were isolated from the disulphide bridge and active-site regions of the A and B chymotrypsins of moose and elk by diagonal peptide-‘mapping’ techniques. From the amino acid compositions of the isolated peptides (assuming maximum homology) and from a comparison of diagonal peptide ‘maps’, there was established a high degree of primary-structure identity among the mooae, elk and ox chymotrypsins. Tentative sequences were deduced for the peptides isolated by diagonal peptide ‘mapping’. 7. Details of the isolation procedures of the moose and elk chymotrypsins A and B and the amino acid analyses of some peptides obtained by diagonal peptide ‘mapping’ have been deposited as Supplementary Publication SUP 50064 (27 pages) at the British Library Lending Division, Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1976) 153, 5.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3