Affiliation:
1. Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75, Avenue Hippocrate, B-1200 Brussels, Belgium
2. Division of Cardiology, Université Catholique de Louvain, 55, Avenue Hippocrate, B-1200 Brussels, Belgium
3. Research Unit for Tropical Diseases, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75, Avenue Hippocrate, B-1200 Brussels, Belgium
Abstract
Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure–function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes. The PFK-2 domain was originally thought to resemble bacterial PFK-1 (6-phosphofructo-1-kinase), but this proved not to be correct. Molecular modelling of the PFK-2 domain revealed that, instead, it has the same fold as adenylate kinase. This was confirmed by X-ray crystallography. A PFK-2/FBPase-2 sequence in the genome of one prokaryote, the proteobacterium Desulfovibrio desulfuricans, could be the result of horizontal gene transfer from a eukaryote distantly related to all other organisms, possibly a protist. This, together with the presence of PFK-2/FBPase-2 genes in trypanosomatids (albeit with possibly only one of the domains active), indicates that fusion of genes initially coding for separate PFK-2 and FBPase-2 domains might have occurred early in evolution. In the enzyme homodimer, the PFK-2 domains come together in a head-to-head like fashion, whereas the FBPase-2 domains can function as monomers. There are four PFK-2/FBPase-2 isoenzymes in mammals, each coded by a different gene that expresses several isoforms of each isoenzyme. In these genes, regulatory sequences have been identified which account for their long-term control by hormones and tissue-specific transcription factors. One of these, HNF-6 (hepatocyte nuclear factor-6), was discovered in this way. As to short-term control, the liver isoenzyme is phosphorylated at the N-terminus, adjacent to the PFK-2 domain, by PKA (cAMP-dependent protein kinase), leading to PFK-2 inactivation and FBPase-2 activation. In contrast, the heart isoenzyme is phosphorylated at the C-terminus by several protein kinases in different signalling pathways, resulting in PFK-2 activation.
Subject
Cell Biology,Molecular Biology,Biochemistry
Reference208 articles.
1. Fructose 2,6-bisphosphate;Van Schaftingen;Adv. Enzymol.,1987
2. Role of fructose 2,6-bisphosphate in the control of glycolysis in mammalian tissues;Hue;Biochem. J.,1987
3. Hormonal regulation of hepatic gluconeogenesis and glycolysis;Pilkis;Annu. Rev. Biochem.,1988
4. Fructose-2,6-bisphosphate in extra hepatic tissues;Hue,1990
5. Fructose-2,6-bisphosphate in primitive systems;Van Schaftingen,1990
Cited by
328 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献