Mechanisms for the inhibition of amyloid aggregation by small ligands

Author:

Ramazzotti Matteo1,Melani Fabrizio2,Marchi Laura2,Mulinacci Nadia2,Gestri Stefano3,Tiribilli Bruno4,Degl'Innocenti Donatella1

Affiliation:

1. Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, viale Morgangi 50, 50134 Firenze, Italy

2. Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, Università degli Studi di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy

3. Liceo Scientifico Statale N. Copernico, via Borgovalsugana 63, 59100 Prato, Italy

4. ISC-CNR–Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche Sede di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy

Abstract

The formation of amyloid aggregates is the hallmark of systemic and neurodegenerative disorders, also known as amyloidoses. Many proteins have been found to aggregate into amyloid-like fibrils and this process is recognized as a general tendency of polypeptides. Lysozyme, an antibacterial protein, is a well-studied model since it is associated in human with systemic amyloidosis and that is widely available from chicken eggs (HEWL, hen egg white lysozyme). In the present study we investigated the mechanism of interaction of aggregating HEWL with rosmarinic acid and resveratrol, that we verified to be effective and ineffective, respectively, in inhibiting aggregate formation. We used a multidisciplinary strategy to characterize such effects, combining biochemical and biophysical methods with molecular dynamics (MD) simulations on the HEWL peptide 49–64 to gain insights into the mechanisms and energy variations associated to amyloid formation and inhibition. MD revealed that neither resveratrol nor rosmarinic acid were able to compete with the initial formation of the β-sheet structure. We then tested the association of two β-sheets, representing the model of an amyloid core structure. MD showed that rosmarinic acid displayed an interaction energy and a contact map comparable to that of sheet pairings. On the contrary, resveratrol association energy was found to be much lower and its contact map largely different than that of sheet pairings. The overall characterization elucidated a possible mechanism explaining why, in this model, resveratrol is inactive in blocking fibril formation, whereas rosmarinic acid is instead a powerful inhibitor.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3