Suppression of neointima formation by targeting β-catenin/TCF pathway

Author:

Williams Helen1,Slater Sadie1,George Sarah Jane1

Affiliation:

1. School of Clinical Sciences, Research Floor Level 7, Bristol Royal Infirmary, Upper Maudlin St, Bristol BS2 8HW, U.K.

Abstract

Coronary artery disease is treated by vein grafting and stent implantation. Late vein graft failure and restenosis of stented arteries reduce the success rates of these approaches and are caused by neointima formation. We have previously shown that Wnt proteins are up-regulated during intimal thickening, and have speculated that these lead to activation of downstream genes with β-catenin/T-cell factor (TCF)-responsive promoters. In the present study, we aimed to provide evidence that β-catenin/TCF signalling promotes neointima formation and assess whether targeting this pathway has potential for reducing neointima formation. We utilized a gene therapy approach selectively targeting cells in which the β-catenin/TCF pathway is activated by using a recombinant adenovirus Ad-TOPTK, which carries a herpes simplex virus thymidine kinase (HSV-TK) gene under the control of a β-catenin/TCF-response promoter. Cells with activated β-catenin will therefore be selectively killed. Ad-TOPTK and ganciclovir (GCV) treatment significantly suppressed the growth of the neointima in a murine model of left carotid artery ligation. In summary, we demonstrated that Wnt/β-catenin/TCF signalling promotes neointima formation, by showing that the selective death of cells with activated β-catenin suppressed neointima formation. This highlights the therapeutic potential for reducing late vein graft failure and in-stent restenosis by targeting β-catenin/TCF signalling.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3