Serum microRNAs are non-invasive biomarkers for the presence and progression of subarachnoid haemorrhage

Author:

Lai Nian-sheng1,Zhang Jia-qi2,Qin Fei-yun1,Sheng Bin1,Fang Xing-gen1,Li Zhen-bao1

Affiliation:

1. Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu City, Anhui 241001, China

2. Department of Neurosurgery, Xinxiang Central Hospital , Xinxiang City, Henan 453000, China

Abstract

miRNAs are important regulators of translation and have been associated with the pathogenesis of a number of cardiovascular diseases including stroke and may be possible prognostic biomarkers. The purpose of the present study was to determine the expression levels of miRNAs in the sera of subarachnoid haemorrhage (SAH) patients and to evaluate their relationships with the severity and clinical outcome of SAH. Serum samples on day 3 after the onset of SAH were subjected to microarray analysis with Exqion miRCURYTM LNA array and quantitative PCR analysis. Serum samples from SAH patients (n=60) and healthy controls (n=10) were subjected to quantitative PCR analysis. The severities and clinical outcomes of the SAH patients were evaluated with the WFNS grade and the Modified Rankin Scale (mRS). Three miRNAs, miR-502-5p, miR-1297 and miR-4320 were significantly up-regulated in the sera of SAH patients when compared with the healthy controls. The serum miR-502-5p and miR-1297 levels were significantly higher in the patients with severe SAH and a poor outcome than in those with mild SAH and a good outcome (P<0.05). The areas under the receiver operating characteristic (ROC) curves (AUCs) of miR-502-5p, miR-1297 and miR-4320 to distinguish the SAH patients from the healthy controls were 0.958 (P<0.001), 0.950 (P<0.001) and 0.843 (P<0.001) respectively. Taken together, these results indicate that miR-502-5p and miR-1297 are potentially valuable indicators of the diagnosis, severity and prognosis of SAH, and miR-4320 was a potentially valuable indicator of the diagnosis of SAH.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3