Plasma levels of oxidative stress-responsive apoptosis inducing protein (ORAIP) in rats subjected to physicochemical oxidative stresses

Author:

Yao Takako1,Fujimura Tsutomu2,Murayama Kimie3,Seko Yoshinori1

Affiliation:

1. Division of Cardiovascular Medicine, The Institute for Adult Diseases, Asahi Life Foundation, 2-2-6 Nihonbashi-Bakurocho, Chuo-ku, Tokyo 103-0002, Japan

2. Laboratory of Bioanalytical Chemistry, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan

3. Division of Proteomics and Biomolecular Science, BioMedical Research Center, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan

Abstract

Oxidative stress is known to play a pivotal role in the pathogenesis of various disorders including atherosclerosis, aging and especially ischaemia/reperfusion injury. It causes cell damage that leads to apoptosis. However, the precise mechanism has been uncertain. Recently, we identified an apoptosis-inducing humoral factor in a hypoxia/reoxygenated medium of cardiac myocytes. We named this novel post-translationally modified secreted form of eukaryotic translation initiation factor 5A (eIF5A) as oxidative stress-responsive apoptosis inducing protein (ORAIP). We developed a sandwich ELISA and confirmed that myocardial ischaemia/reperfusion markedly increased plasma levels of ORAIP. To investigate whether the role of ORAIP is common to various types of oxidative stress, we measured plasma ORAIP levels in rats subjected to three physicochemical models of oxidative stress including N2/O2 inhalation, cold/warm-stress (heat shock) and blood acidification. In all three models, plasma ORAIP levels significantly increased and reached a peak level at 10–30 min after stimulation, then decreased within 60 min. The (mean±S.E.M.) plasma ORAIP levels before and after (peak) stimulation were (16.4±9.6) and (55.2±34.2) ng/ml in N2/O2 inhalation, (14.1±12.4) and (34.3±14.6) ng/ml in cold/warm-stress, and (18.9±14.3) and (134.0±67.2) ng/ml in blood acidification study. These data strongly suggest that secretion of ORAIP in response to oxidative stress is universal mechanism and plays an essential role. ORAIP will be an important novel biomarker as well as a specific therapeutic target of these oxidative stress-induced cell injuries.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3