Affiliation:
1. Laboratory for Industrial Microbiology and Biochemistry, University of Leuven, 3030 Heverlee-Louvain, Belgium
Abstract
Mitochondria and submitochondrial particles of the osmophilic yeast-like fungus Moniliella tomentosa may respire by means of two pathways: a normal cytochrome pathway, sensitive to cyanide and antimycin A, and an alternative pathway, which is insensitive to these inhibitors but is specifically inhibited by salicylhydroxamic acid. The affinities of both oxidases for succinate and NADH as substrates, for O2 as terminal electron acceptor, and for AMP as stimulator of the alternative oxidase were determined. 1. Submitochondrial particles of M. tomentosa may also respire by means of a cyanide-sensitive and/or cyanide-insensitive system. 2. The activities of both oxidases as compared with the total activity are roughly the same in submitochondrial particles as in the original mitochondria. 3. The terminal oxidase of the cyanide-insensitive pathway requires a 10-fold higher O2 concentration for saturation than does cytochrome c oxidase. 4. The apparent Km for succinate is about 3 times higher for the alternative than for the normal oxidase when measured in mitochondria, and 4–10 times higher when measured in submitochondrial particles. The apparent Km for NADH is roughly the same for both oxidases. 5. The apparent Km values of both oxidases for succinate are always lower in submitochondrial particles than in mitochondria. 6. The apparent Km for AMP, acting as a stimulator of the alternative oxidase, is the same (25μm) in mitochondria as in sub-mitochondrial particles. These results are discussed in the light of the structure and localization of the components of the alternative oxidase.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献