Identification of a novel Na+- and Cl−-coupled transport system for endogenous opioid peptides in retinal pigment epithelium and induction of the transport system by HIV-1 Tat

Author:

HU Huankai1,MIYAUCHI Seiji1,BRIDGES Christy C.1,SMITH Sylvia B.2,GANAPATHY Vadivel1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta GA 30912, U.S.A.

2. Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912, U.S.A.

Abstract

The endogenous opioid peptides enkephalins, dynorphins and endorphins consist of five or more amino acids. These peptides participate in a multitude of biological functions in mammalian cells by interacting with different subtypes of opiate receptors located on the plasma membrane and in the nucleus. Here we report on the identification of a new peptide transport system in the human retinal pigment epithelial (RPE) cells that transports a variety of endogenous opioid peptides with high affinity. We identified this novel, hitherto unrecognized, transport system when we were analysing the differential effects of Tat, the transacting factor encoded by HIV-1, on various transport processes in RPE cells. This transport system is markedly induced by Tat. This opioid transport system is energized by transmembrane Na+ and Cl− gradients and is distinct from any of the previously identified transport systems for opioid peptides in mammalian cells. Free amino acids, dipeptides, tripeptides and non-peptide opiate receptor antagonists are excluded by this newly identified transport system. The affinities of endogenous opioid peptides for this system are in the range of 0.4–40 μM. The identification of the high-affinity Na+- and Cl−-coupled transport system in mammalian cells that is specific for endogenous opioid peptides and is induced by HIV-1 Tat is of significance not only to the biology of opioid peptides but also to the pathology of HIV-1 infection in humans.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3