Synthesis and metabolism of all-trans-[11-3H]retinyl β-glucuronide in rats in vivo

Author:

Barua A B1,Batres R O1,Olson J A1

Affiliation:

1. Department of Biochemistry and Biophysics, Iowa State University, Ames, IA 50011, U.S.A.

Abstract

All-trans-[11-3H]retinyl beta-glucuronide (all-trans-[11-3H]ROG) was synthesized from [3H]retinol by an improved synthetic procedure. After its intraperitoneal injection into rats, ROG is initially found as the predominant labelled component in the serum, but then is distributed to the liver, intestine, kidney and other organs of the body. Esters of vitamin A, which constituted the major metabolite of ROG, were detected in the liver as well as in other tissues. Of the labelled vitamin A esters derived from tritiated ROG in the liver and intestine, about 50% contained 5,6-epoxyretinol, which was characterized by its chromatographic behaviour, formation of an acetyl ester and lack of reactivity with diazomethane. Thus ROG, although converted to retinol in vivo, might also act physiologically in an intact form.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3