Structure–function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues

Author:

BISSIG Karl-Dimiter1,WUNDERLI-YE Haibo1,DUDA Petra W.1,SOLIOZ Marc1

Affiliation:

1. Department of Clinical Pharmacology, University of Berne, 3010 Berne, Switzerland

Abstract

The Enterococcus hirae CopB ATPase (EC 3.6.1.3) confers copper resistance to the organism by expelling excess copper. Two related human ATPase genes, ATP7A (EC 3.6.1.36) and ATP7B (EC 3.6.1.36), have been cloned as the loci of mutations causing Menkes and Wilson diseases, diseases of copper metabolism. Many mutations in these genes have been identified in patients. Since it has not yet been possible to purify the human copper ATPases, it has proved difficult to test the impact of mutations on ATPase function. Some mutations occur in highly conserved sequence motifs, suggesting that their effect on function can be tested with a homologous enzyme. Here, we used the E. hirae CopB ATPase to investigate the impact of such mutations on enzyme function in vivo and in vitro. The Menkes disease mutation of Cys-1000 → Arg, changing the conserved Cys-Pro-Cys (‘CPC’) motif, was mimicked in CopB. The corresponding Cys-396 → Ser CopB ATPase was unable to restore copper resistance in a CopB knock-out mutant in vivo. The purified mutant ATPase still formed an acylphosphate intermediate, but possessed no detectable ATP hydrolytic activity. The most frequent Wilson disease mutation, His-1069 → Gln, was introduced into CopB as His-480 → Gln (H480Q). This mutant CopB also failed to confer copper resistance to a CopB knock-out strain. Purified H480Q CopB formed an acylphosphate intermediate and retained a small, but significant, ATPase activity. Our results reveal that Cys-396 and His-480 of CopB are key residues for ATPase function, and similar roles are suggested for Cys-1000 and His-1069 of Menkes and Wilson ATPases respectively.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3