Phosphoinositide regulation of clathrin-mediated endocytosis

Author:

Haucke V.1

Affiliation:

1. Institut für Chemie-Membranbiochemie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany

Abstract

Endocytosis of transmembrane receptors largely occurs via clathrin-coated vesicles that bud from the plasma membrane and deliver their cargo to the endosomal system for recycling or degradation. PIs (phosphoinositides) control the timing and localization of endocytic membrane trafficking by recruiting adaptors and other components of the transport machinery, thereby being part of a coincidence detection system in adaptor-mediated vesicle transport. Activation of organelle- and substrate-specific PI kinases by small GTPases such as Arf (ADP-ribosylation factor) and other factors may result in local changes of PI content, thereby regulating activity-dependent endocytic events including the recycling of synaptic vesicle membranes at nerve terminals. One such example is the PtdIns(4)P 5-kinase-mediated formation of PI(4,5)P2 [PtdIns(4,5)P2], which is required for the exo- and endo-cytic cycling of presynaptic vesicles and secretory granules. Over the last few years, protein X-ray crystallography in combination with biochemical and cell biological assays has been used to investigate the structure and function of many PI-binding proteins, including protein components of the endocytic machinery. These studies have provided molecular insights into the mechanisms by which PI(4,5)P2 recruits and activates adaptor proteins and their binding partners. In this mini-review, I will discuss the pathways of PI(4,5)P2 formation and its interactions with endocytic trafficking adaptors.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3