Effective electrostatic charge of coagulation factor X in solution and on phospholipid membranes: implications for activation mechanisms and structure–function relationships of the Gla domain

Author:

McGEE P. Maria1,TEUSCHLER Hoa1,LIANG Jie2

Affiliation:

1. Medicine Department, Rheumatology Section, Bowman-Gray School of Medicine, Wake-Forest University, Winston-Salem, NC 27157, U.S.A.

2. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61807, U.S.A.

Abstract

Electrostatic interactions during activation of coagulation factor X were analysed by comparing effects of ionic strength on reaction rates with predictions of classical electrostatic theory. Geometrical correlations were investigated using alpha-shape-based computations on the crystal structure of Ca-fragment 1 of prothrombin. The ionic strength of the reaction environment was controlled with different univalent salts including NaCl, KCl, CsCl, LiCl, NaI, NaBr and KI. Reactions were assembled in three different environments: aqueous phase, cell membranes and synthetic TF/PS/PC (tissue factor relipidated in 30% phosphatidylserine, 70% phosphatidylcholine) vesicles. Reaction rates were measured at pH 7.2, 4 mM CaCl2 and 33 °C, using chromogenic substrate to follow factor Xa generation. Rates decreased with increasing concentration of univalent salt, and the magnitude of the decrease was independent of salt type. On the basis of electrostatic relationships on PS/PC vesicles, the effective charge on factor X was +1.5, and the PS/factor X stoichiometry was 2.28. Structural analysis of the γ-carboxyglutamic acid (Gla) domain revealed three surface pockets, forming potential sites for Ca2+ binding, with distinct spatial orientations. Interpreted together, the results of the geometric analysis and the measured effective charges suggest an efficient electrostatic mechanism for capture and retention of substrates by procoagulant membranes. Non-specific and delocalized interaction between the membrane and each one of the charged facets of the Gla domain can increase the probability of substrate binding, while allowing rotational and translational mobility of substrate for specific interaction with the enzyme.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3