Affiliation:
1. Medicine Department, Rheumatology Section, Bowman-Gray School of Medicine, Wake-Forest University, Winston-Salem, NC 27157, U.S.A.
2. National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61807, U.S.A.
Abstract
Electrostatic interactions during activation of coagulation factor X were analysed by comparing effects of ionic strength on reaction rates with predictions of classical electrostatic theory. Geometrical correlations were investigated using alpha-shape-based computations on the crystal structure of Ca-fragment 1 of prothrombin. The ionic strength of the reaction environment was controlled with different univalent salts including NaCl, KCl, CsCl, LiCl, NaI, NaBr and KI. Reactions were assembled in three different environments: aqueous phase, cell membranes and synthetic TF/PS/PC (tissue factor relipidated in 30% phosphatidylserine, 70% phosphatidylcholine) vesicles. Reaction rates were measured at pH 7.2, 4 mM CaCl2 and 33 °C, using chromogenic substrate to follow factor Xa generation. Rates decreased with increasing concentration of univalent salt, and the magnitude of the decrease was independent of salt type. On the basis of electrostatic relationships on PS/PC vesicles, the effective charge on factor X was +1.5, and the PS/factor X stoichiometry was 2.28. Structural analysis of the γ-carboxyglutamic acid (Gla) domain revealed three surface pockets, forming potential sites for Ca2+ binding, with distinct spatial orientations. Interpreted together, the results of the geometric analysis and the measured effective charges suggest an efficient electrostatic mechanism for capture and retention of substrates by procoagulant membranes. Non-specific and delocalized interaction between the membrane and each one of the charged facets of the Gla domain can increase the probability of substrate binding, while allowing rotational and translational mobility of substrate for specific interaction with the enzyme.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献