Affiliation:
1. Molecular Pharmacology Group, Institute of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.
Abstract
Adipocyte membranes from control rats exhibited a functional Gi (inhibitory guanine-nucleotide-binding protein) activity which could be assessed either by the inhibitory action of low concentrations of guanosine 5-[beta gamma-imido]triphosphate (p[NH]ppG) upon forskolin-stimulated adenylate cyclase activity or by the inhibitory action of high concentrations of GTP upon isoprenaline-stimulated adenylate cyclase activity. When membranes from animals made diabetic with streptozotocin were used, then both such inhibitory functions of Gi were abolished. In contrast, receptor-mediated inhibitory responses of Gi, effected by N6-phenylisopropyl (adenosine), prostaglandin E2 or nicotinate, were either unchanged or even apparently more effective in membranes from diabetic animals. Induction of diabetes did not cause any change in the adipocyte plasma membrane levels of the alpha, GTP-binding subunits of either Gi1 or Gi2 or of Gs (stimulatory guanine-nucleotide-binding protein), but elicited an increase in the level of alpha-Gi3. The induction of diabetes reduced the specific activity of adenylate cyclase in adipocyte membranes and enhanced the stimulatory effect of isoprenaline. It is suggested that diabetes causes selective changes in the functioning of Gi in adipocyte membranes which removes the tonic GTP-dependent inhibitory function of this G-protein.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献