Ligand-induced conformational changes modify proteolytic cleavage of the adipocyte insulin-sensitive glucose transporter

Author:

Yano Y1,May J M2

Affiliation:

1. Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-2230, U.S.A

2. Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2230, U.S.A

Abstract

The transport conformation of the human erythrocyte glucose transporter (GLUT1) modifies rates of proteolytic cleavage of this protein by a variety of enzymes. We investigated the effects of ligand-induced conformational change on the susceptibility to enzymic cleavage of the insulin-sensitive rat adipocyte glucose transporter (GLUT4). A GLUT4-enriched slow sedimenting microsomal fraction was prepared from basal adipocytes and subjected to PAGE and immunoblotting. The GLUT4 protein was detected in these immunoblots with a C-terminal-specific antiserum as an M(r)-46,000-50,000 doublet. GLUT1 protein was not detected by a GLUT1-specific antiserum in these membranes. Tryptic digestion caused loss of the GLUT4 signal in immunoblots in a time- and concentration-dependent fashion. Low-M(r) membrane-bound fragments were not observed in electrophoretic gels, whether detection was attempted by immunoblotting or by counting radioactivity in gel slices following photolabelling with [3H]cytochalasin B. Transport-specific ligands known to induce an outward-facing conformation in the human erythrocyte GLUT1 protein retarded cleavage of the GLUT4 protein by submaximal concentrations of trypsin, whereas ligands known to induce an inward-facing conformation increased the extent of cleavage. The transported substrate D-glucose retarded tryptic cleavage of GLUT4. This result contrasts with the known behaviour of GLUT1, in which D-glucose accelerates cleavage. Cleavage of GLUT4 by thermolysin was also retarded by the outward-binding analogue 4,6-O-ethylidene glucose. These results show that the conformational sensitivity to proteolysis of GLUT4 mirrors that of GLUT1, except that the glucose-loaded GLUT4 has a different steady-state configuration, which may reflect underlying kinetic differences between the two proteins.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3