NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol

Author:

Takayanagi R,Takeshige K,Minakami S

Abstract

Malondialdehyde formations by bovine heart submitochondrial particles supported by NADH or NADPH in the presence of ADP and FeCl3 was studied. The NADH-dependent reaction was maximal at very low rate of electron input from NADH to the respiratory chain and it decreased when the rate became high. The reaction was stimulated by rotenone and inhibited by antimycin A when the input was fast, whereas it was not affected by the inhibitors when the input was slow. The input rate of the electrons from NADPH was also so low that the reaction supported by NADPH was not affected by the inhibitors. Most of the endogenous ubiquinone in the particles treated with antimycin A was reduced by NADH even in the presence of ADP-Fe3+ chelate, but uniquinone was not reduced by NADPH when ADP-Fe3+ was present. Succinate strongly inhibited both NADH- and NADPH-dependent lipid peroxidation. The inhibition was abolished when uniquinone was removed from the particles, and it appeared again when uniquinone was reincorporated into the particles. Reduced uniquinone-2 also inhibited the peroxidation, but duroquinol, which reduces cytochrome b without reducing endogenous uniquinone, did not. Thus the malondialdehyde formation appeared to be inversely related to the extent of the reduction of endogenous uniquinone. These observations suggest that both NADH- and NADPH-dependent liquid-peroxidation reactions are closely related to the respiratory chain and that the peroxidation is controlled by the concentration of reduced ubiquinone.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 203 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3