Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae

Author:

RANSON Hilary12,ROSSITER Louise1,ORTELLI Federica1,JENSEN Betty2,WANG Xuelan2,ROTH Charles W.3,COLLINS Frank H.2,HEMINGWAY Janet1

Affiliation:

1. School of Biosciences, Main College, Cardiff University, PO Box 915, Cardiff CF10 3TL, Wales, U.K.

2. Department of Biological Sciences, University of Notre Dame, PO Box 369, Notre Dame, IN 46556, U.S.A.

3. Unité de Biochimie et Biologie Moléculaire des Insectes, Institut Pasteur, 75015 Paris, France

Abstract

The sequence and cytological location of five Anopheles gambiae glutathione S-transferase (GST) genes are described. Three of these genes, aggst1-8, aggst1-9 and aggst1-10, belong to the insect class I family and are located on chromosome 2R, in close proximity to previously described members of this gene family. The remaining two genes, aggst3-1 and aggst3-2, have a low sequence similarity to either of the two previously recognized classes of insect GSTs and this prompted a re-evaluation of the classification of insect GST enzymes. We provide evidence for seven possible classes of insect protein with GST-like subunits. Four of these contain sequences with significant similarities to mammalian GSTs. The largest novel insect GST class, class III, contains functional GST enzymes including two of the A. gambiae GSTs described in this report and GSTs from Drosophila melanogaster, Musca domestica, Manduca sexta and Plutella xylostella. The genes encoding the class III GST of A. gambiae map to a region of the genome on chromosome 3R that contains a major DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] resistance gene, suggesting that this gene family is involved in GST-based resistance in this important malaria vector. In further support of their role in resistance, we show that the mRNA levels of aggst3-2 are approx. 5-fold higher in a DDT resistant strain than in the susceptible strain and demonstrate that recombinant AgGST3-2 has very high DDT dehydrochlorinase activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3