Case study: Perspectives on the use of LEGO® bricks in the biochemistry classroom

Author:

Austin Shane1ORCID,Millar Crystal-Ann1,Christmas Sherena1

Affiliation:

1. Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados

Abstract

Abstract The use of LEGO® bricks in the higher education classroom has increased in the last two decades. This is no different in the STEM classroom and several disciplines, including physics, chemistry, and biology, have all made use of LEGO® bricks in some way to create models for active learning activities. Currently, the discipline to make the greatest use of LEGO® bricks is chemistry; only limited examples exist in biochemistry and the molecular life sciences. Here, we present the use of a LEGO® brick modelling activity in the introductory biochemistry classroom during the teaching of metabolism. We present student comments on the activity and the models that were generated by the students. Additionally, we focus on other instructor and project student-designed models for the teaching of ATP synthesis, gene regulation and restriction digestion. Interestingly, both the gene regulation and restriction digest activities were generated with the help of undergraduate students or recent graduates, by applying a backward design approach. This case study seeks to encourage more molecular life science educators to adopt the use of LEGO® bricks in their classrooms to engage in more active learning.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Reference37 articles.

1. How it all began: the origins of LEGO® serious Play®;Roos;Int. J. Manag. Appl. Res.,2018

2. Open-source/Introduction to LEGO® SERIOUS PLAY®;Group TL,2010

3. A low-cost quantitative absorption spectrophotometer;Albert;J. Chem. Educ.,2012

4. A simple, small-scale lego colorimeter with a light-emitting diode (LED) used as detector;Asheim;J. Chem. Educ.,2014

5. Teaching referencing and plagiarism using LEGO® SERIOUS PLAY®;Bond;Int. J. Manag. Appl. Res.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3