Receptor-mediated nonhost resistance in plants

Author:

Oh Soohyun1,Choi Doil1ORCID

Affiliation:

1. Plant Immunity Research Center, Plant Genomics and Breeding Institute, Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Gwanak-ro-1, Gwanak-gu, Seoul 08826, Republic of Korea

Abstract

AbstractNonhost resistance (NHR) is a plant immune response that prevents many microorganisms in the plant’s environment from pathogenicity against the plant. Since successful pathogens have adapted to overcome the immune systems of their host, the durable nature of NHR has potential in the management of plant disease. At present, there is genetic and molecular evidence that the underlying molecular mechanisms of NHR are similar to the plant immune responses that occur in host plants following infection by adapted pathogens. We consider that the molecular basis of NHR is multilayered, conferred by physicochemical barriers and defense responses that are induced following molecular recognition events. Moreover, the relative contribution of each component may depend on evolutionary distances between host and nonhost plants of given pathogen species. This mini-review has focused on the current knowledge of plant NHR, especially the recognition of non-adapted pathogens by nonhost plants at the cellular level. Recent gains in understanding the roles of plasma membrane-localized pattern-recognition receptors (PRRs) and the cytoplasmic nucleotide-binding leucine-rich repeat receptors (NLRs) associated with these processes, as well as the genes involved, are summarized. Finally, we provide a theoretical perspective on the durability of receptor-mediated NHR and its practical potential as an innovative strategy for crop protection against pathogens.

Publisher

Portland Press Ltd.

Subject

Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3