Diabetes-induced alterations in the expression, functioning and phosphorylation state of the inhibitory guanine nucleotide regulatory protein Gi-2 in hepatocytes

Author:

Bushfield M1,Griffiths S L1,Murphy G J1,Pyne N J1,Knowler J T1,Milligan G1,Parker P J2,Mollner S3,Houslay M D1

Affiliation:

1. Molecular Pharmacology Group, Department of Biochemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.

2. Ludwig Institute for Cancer Research, Courtauld Building, 91 Riding Street, London WIP 8BT, U.K.

3. Physiologisch-Chemisches Institut der Universitat, Koellikerstrasse 2, 8700 Wurzburg, Sonderforschungsbereich 176, Federal Republic of Germany

Abstract

Levels of the G-protein alpha-subunits alpha-Gi-2, alpha-Gi-3 and the 42 kDa, form of alpha-Gs were markedly decreased in hepatocyte membranes from streptozotocin-diabetic animals as compared with normals. In contrast, no detectable changes in alpha-Gi subunits were seen in liver plasma membranes of streptozotocin-diabetic animals, although levels of the 45 kDa form of Gs were increased. G-protein beta subunits in plasma membranes were unaffected by diabetes induction. Analysis of whole-liver RNA indicated that the induction of diabetes had little effect on transcript levels of Gi-3, caused an increase in Gs transcripts and decreased transcript number for Gi-2, albeit to a much lesser extent than was observed upon analysis of hepatocyte RNA. In both hepatocyte and liver plasma membranes, immunoblot analysis showed that levels of the catalytic unit of adenylate cyclase were increased upon induction of diabetes. Under basal conditions, alpha-Gi-2 from hepatocytes of diabetic animals was found to be both phosphorylated to a greater extent than alpha-Gi-2 isolated from hepatocytes of normal animals, and furthermore was resistant to any further phosphorylation upon challenge of hepatocytes with angiotensin, vasopressin or the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. Treatment of isolated plasma membranes from normal, but not diabetic, animals with purified protein kinase C caused the phosphorylation of alpha-Gi-2. Treatment of membranes from diabetic animals with alkaline phosphatase caused the dephosphorylation of alpha-Gi-2 and rendered it susceptible to subsequent phosphorylation with protein kinase C. Low concentrations of the non-hydrolysable GTP analogue guanylyl 5′-imidodiphosphate inhibited adenylate cyclase activity in both hepatocyte and liver plasma membranes from normal, but not diabetic, animals.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3