Steady-state kinetic analysis of aldehyde dehydrogenase from human erythrocytes

Author:

Henehan G T M1,Tipton K F1

Affiliation:

1. Department of Biochemistry, Trinity College, Dublin 2, Ireland.

Abstract

The steady-state kinetics of purified cytoplasmic aldehyde dehydrogenase (EC 1.2.1.3) from human erythrocytes have been studied at 37 degrees C. Previous studies of the enzyme from several mammalian sources, which used a lower assay temperature, have been difficult to interpret because of the substrate activation by acetaldehyde which led to complex kinetic behaviour. At 37 degrees C the initial-rate data do not depart significantly from Michaelis-Menten kinetics. Studies of the variation of initial rates as a function of the concentrations of both substrates and studies of the inhibition by NADH were consistent with a sequential mechanism being followed. High-substrate inhibition by acetaldehyde was competitive with respect to NAD+. The enzyme was not inhibited by the product acetate and thus the results of these studies, although consistent with an ordered mechanism in which NAD+ was the first substrate to bind, were inconclusive. That such a mechanism was followed was confirmed by determination of the initial-rate behaviour in the presence of acetaldehyde and glycolaldehyde as alternative substrates. When the reciprocal of the initial rate of NADH formation was plotted against the acetaldehyde concentration at a series of fixed ratios between that substrate and glycolaldehyde, a linear ‘mixed inhibition’ pattern was obtained, confirming the mechanism to be ordered with NAD+ being the leading substrate and with kinetically significant ternary complex-formation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3