The pancreatic β-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release

Author:

Hellman Bo1,Idahl Lars-Åke1,Lernmark Åke1,Sehlin Janove1,Täljedal Inge-Bert1

Affiliation:

1. Department of Histology, University of Umeå, Umeå, Sweden

Abstract

The transport and oxidation of glucose, the content of fructose 1,6-diphosphate, and the release of insulin were studied in microdissected pancreatic islets of ob/ob mice incubated in Krebs–Ringer bicarbonate medium. Under control conditions glucose oxidation and insulin release showed a similar dependence on glucose concentration with the steepest slope in the range 5–12mm. The omission of Ca2+, or the substitution of choline ions for Na+, or the addition of diazoxide had little if any effect on glucose transport. However, Ca2+ or Na+ deficiency as well as diazoxide (7-chloro-3-methyl-1,2,4-benzothiadiazine 1,1-dioxide) or ouabain partially inhibited glucose oxidation. These alterations of medium composition also increased the islet content of fructose 1,6-diphosphate, as did the addition of adrenaline. Phentolamine [2-N-(3-hydroxyphenyl)-p-toluidinomethyl-2-imidazoline] counteracted the effects of adrenaline and Ca2+ deficiency on islet fructose 1,6-diphosphate. After equilibration in Na+-deficient medium, the islets exhibited an increase in basal insulin release whereas the secretory response to glucose was inhibited. The inhibitory effects of Na+ deficiency on the secretory responses to different concentrations of glucose correlated with those on 14CO2 production. When islets were incubated with 17mm-glucose, the sudden replacement of Na+ by choline ions resulted in a marked but transient stimulation of insulin release that was not accompanied by a demonstrable increase of glucose oxidation. Galactose and 3-O-methylglucose had no effect on glucose oxidation or on insulin release. The results are consistent with a metabolic model of the β-cell recognition of glucose as insulin secretagogue and with the assumption that Ca2+ or Na+ deficiency, or the addition of adrenaline or diazoxide, inhibit insulin release at some step distal to stimulus recognition. In addition the results suggest that these conditions create a partial metabolic block of glycolysis in the β-cells. Hence the interrelationship between the processes of stimulus recognition and insulin discharge may involve a positive feedback of secretion on glucose metabolism.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3