Kinetics of Factor X activation by the membrane-bound complex of Factor IXa and Factor VIIIa

Author:

PANTELEEV Mikhail A.1,SAENKO Evgueni L.2,ANANYEVA Natalya M.2,ATAULLAKHANOV Fazoil I.134

Affiliation:

1. Laboratory of Physical Biochemistry of Blood, National Research Center for Hematology, Russian Academy of Medical Sciences, Novozykovskii pr. 4a, Moscow, 125167, Russia

2. Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, 15601 Crabbs Branch Way, Rockville, MD 20855, U.S.A.

3. Laboratory of Metabolic Modelling and Bioinformatics, Institute of Theoretical and Experimental Biophysics, Prospect Nauky 4, Pushchino, Moscow Region, 192267, Russia

4. Faculty of Physics, Moscow State University, Leninskie Gory, Moscow, 119992, Russia

Abstract

Intrinsic tenase consists of activated Factors IX (IXa) and VIII (VIIIa) assembled on a negatively charged phospholipid surface. In vivo, this surface is mainly provided by activated platelets. In vitro, phosphatidylcholine/phosphatidylserine vesicles are often used to mimic natural pro-coagulant membranes. In the present study, we developed a quantitative mathematical model of Factor X activation by intrinsic tenase. We considered two situations, when complex assembly occurs on either the membrane of phospholipid vesicles or the surface of activated platelets. On the basis of existing experimental evidence, the following mechanism for the complex assembly on activated platelets was suggested: (i) Factors IXa, VIIIa and X bind to their specific platelet receptors; (ii) bound factors form complexes on the membrane: platelet-bound Factor VIIIa provides a high-affinity site for Factor X and platelet-bound Factor IXa provides a high-affinity site for Factor VIIIa; (iii) the enzyme–cofactor–substrate complex is assembled. This mechanism allowed the explanation of co-operative effects in the binding of Factors IXa, VIIIa and X to platelets. The model was reduced to obtain a single equation for the Factor X activation rate as a function of concentrations of Factors IXa, VIIIa, X and phospholipids (or platelets). The equation had a Michaelis–Menten form, where apparent Vmax and Km were functions of the factors’ concentrations and the internal kinetic constants of the system. The equation obtained can be used in both experimental studies of intrinsic tenase and mathematical modelling of the coagulation cascade. The approach of the present study can be applied to research of other membrane-dependent enzymic reactions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3