Signalling of the M3-muscarinic receptor to the anti-apoptotic pathway

Author:

BUDD David C.1,SPRAGG Elizabeth J.1,RIDD Katie2,TOBIN Andrew B.1

Affiliation:

1. Department of Cell Physiology and Pharmacology, University of Leicester, P.O. Box 138, University Road, Leicester LE1 9HN, U.K.

2. MRC Toxicology Unit, Hodgkin Building, University of Leicester, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, U.K.

Abstract

The process of programmed cell death (or apoptosis) occurs widely in tissue maintenance and embryonic development, and is under tight regulatory control. It is now clear that one of the important regulators of apoptosis are G-protein-coupled receptors. In the present study, we investigate the regulatory mechanism employed by the Gq/11-coupled M3-muscarinic receptor in mediating an anti-apoptotic response. Using a CHO (Chinese-hamster ovary) cell model, we demonstrate that the M3-muscarinic receptor anti-apoptotic response is independent of calcium/phospholipase C signalling. This response can, however, be inhibited by the transcriptional inhibitor actinomycin D at a concentration that inhibits the rapid increase in gene transcription mediated by M3-muscarinic receptor stimulation. Furthermore, apoptosis in CHO cells induced by the DNA-damaging agent, etoposide, is associated with a fall in the levels of the anti-apoptotic Bcl-2 protein. This fall in Bcl-2 protein concentration can be attenuated by M3-muscarinic receptor stimulation. We conclude, therefore, that the M3-muscarinic receptor signals to the anti-apoptotic pathway via a mechanism that is independent of calcium/phospholipase C signalling, but in a manner that involves both gene transcription and the up-regulation of Bcl-2 protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3