Biochemical lesions in copper-deficient rats caused by secondary iron deficiency. Derangement of protein synthesis and impairment of energy metabolism

Author:

Weisenberg Emil1,Halbreich Avraham1,Mager Jacob1

Affiliation:

1. Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, P.O. Box 1172, Jerusalem, Israel

Abstract

Severe copper deficiency was induced in rats by rearing nursing dams and their offsprings on a semisynthetic diet comprising all the requisite nutrients and trace metals except copper. The copper-deprived rats exhibited growth retardation, severe anaemia, loss of caeruloplasmin, decrease of cytochrome oxidase, accumulation of salt-soluble collagen and a drastic decrease in iron in plasma and liver. Apart from these characteristic signs of deficiency, a marked inhibition of protein synthesis was found to occur both in vivo and in cell-free liver preparations. The curtailed ability to carry out endogenously coded amino acid incorporation into protein contrasted with the unimpaired poly(U)-acid-directed phenylalanine polymerization. This inhibition pattern, as well as the attendant disaggregation of the liver polyribosomes, suggested that the primary biosynthetic lesion was located at the stage of peptide-chain initiation. Concurrently with this alteration there was a pronounced depletion of the hepatic ATP content, associated with a parallel depression of mitochondrial respiration and an enhancement of ATPase activity. Supplementation of the copper-deficient diet with a 2–4-fold excess of iron (relative to the standard diet) prevented growth retardation and anaemia and restored normal energy metabolism, as well as unimpaired protein-synthesizing capacity. The conclusion that these disturbances were primarily determined by the secondary iron deficiency was also borne out by the finding that similar alterations occurred in rats maintained on a copper-sufficient but iron-deficient diet. On the other hand, the iron-fortified diet failed to reverse the other signs of copper deficiency, namely the loss of caeruloplasmin, the diminished rate of cytochrome oxidase and the increase of soluble collagen. The interrelations between the various biochemical lesions induced by deprivation of copper or iron are discussed and the possible role of ATP depletion in determining the derangement of protein synthesis is considered.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3