The contribution of pyruvate cycling to loss of [6-3H]glucose during conversion of glucose to glycogen in hepatocytes: effects of insulin, glucose and acinar origin of hepatocytes

Author:

Agius L1,Tosh D1,Peak M1

Affiliation:

1. Department of Medicine, The Medical School, Framlington Place, The University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, U.K.

Abstract

1. During conversion of [6-3H,U-14C]glucose to glycogen in liver, loss of 6-3H can occur either by cycling via pyruvate (between glycolysis and gluconeogenesis) or by other mechanisms. We used mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, to determine the extent to which pyruvate cycling contributes to loss of 6-3H during glucose conversion to glycogen in hepatocytes. 2. Mercaptopicolinate increased the 3H/14C ratio in glycogen during incubation of rat, guinea pig, pig and human hepatocytes with [6-3H,U-14C]glucose. The increase in the 3H/14C ratio in glycogen caused by mercaptopicolinate was greater in periportal than in perivenous rat hepatocytes, indicating that cycling of glucose via pyruvate is more prominent in cells with a higher gluconeogenic relative to glycolytic capacity. 3. The effect of mercaptopicolinate on the 3H/14C ratio in glycogen was observed both in the absence and in the presence of insulin, indicating that stimulation of glycogen synthesis by insulin is not associated with inhibition of pyruvate cycling. In rat and guinea pig but not in pig hepatocytes, the effects of mercaptopicolinate on the 3H/14C ratio in glycogen were greater at 10-15 mM glucose than at 30 mM glucose, suggesting diminished cycling via pyruvate at high glucose concentrations. 4. Insulin increased the loss of 6-3H during stimulation of conversion of glucose to glycogen in hepatocytes from all species. This was due in part to an increase in pyruvate cycling and in part to other mechanisms that are not inhibited by mercaptopicolinate. 5. These results suggest that pyruvate cycling is a significant, but not exclusive, component of the loss of 6-3H in the hepatocyte during glucose conversion to glycogen. The extent of pyruvate cycling is dependent on the acinar origin of the hepatocytes and on the glucose concentration and presence of insulin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3