Structure and activity of mouse S-adenosylmethionine decarboxylase gene promoters and properties of the encoded proteins

Author:

NISHIMURA Kazuhiro1,LIISANANTTI Marja2,MUTA Yasuhide1,KASHIWAGI Keiko1,SHIRAHATA Akira3,JÄNNE Marja2,KANKARE Katja2,JÄNNE Olli A.2,IGARASHI Kazuei1

Affiliation:

1. Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263, Japan

2. Institute of Biomedicine, Department of Physiology and Department of Clinical Chemistry, University of Helsinki, FIN-00014 Helsinki, Finland

3. Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 350-02, Japan

Abstract

The promoter regions of two S-adenosylmethionine decarboxylase genes (AMD genes) were isolated from a mouse genomic library. One promoter was that of the bona fidemouse AMD gene (AMD1) whereas the other was that of the intronless AMD gene (AMD2). There was no sequence identity between the two promoters. The sequence of the AMD1 promoter was highly homologous to the human AMD1 and rat Amd1B promoters. After transient transfection in various cell lines, the AMD1 promoter was one to two orders of magnitude stronger than the AMD2 promoter. Similar results were obtained by using stably transfected mouse FM3A cells. In S-adenosylmethionine decarboxylase (AdoMetDC)-overproducing SAM-1 cells, the AMD1 gene was amplified over 5-fold. AdoMetDC encoded by the intronless AMD2 gene had two amino acid replacements (Met to Ile at codon 70 and Ala to Val at codon 139), compared with the protein encoded by the AMD1 gene, and exhibited decreased catalytic activity (< 50%) and decreased processing activity when expressed in AdoMetDC-deficient Escherichia coli cells. When Ile-70 of the protein encoded by AMD2 was converted into Met, both the catalytic and processing activities recovered markedly, indicating that Met-70 adjacent to the proenzyme-processing site is important for both activities. The third AMD locus (AMD3) in FM3A cells contains a pseudogene, in which deletion of two bases generates a premature termination codon at position 57. Since the AMD2 promoter had only 1–10% of the strength of the bona fideAMD1 gene and AMD2 protein possessed lower specific activity, the relative contribution of the AMD2-encoded enzyme to total AdoMetDC activity is small. Thus AdoMetDC activity in murine cells is thought to be due mainly to the product of the AMD1 gene.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3