Function of the 90-loop (Thr90–Glu100) region of staphylokinase in plasminogen activation probed through site-directed mutagenesis and loop deletion

Author:

RAJAMOHAN Govindan1,DAHIYA Monika1,MANDE Shekhar C.1,DIKSHIT Kanak L.1

Affiliation:

1. Institute of Microbial Technology (IMTECH), Sector 39 A, Chandigarh-160036, India

Abstract

Staphylokinsae (SAK) forms a bimolecular complex with human plasmin(ogen) and changes its substrate specificity by exposing new exosites that enhances accession of substrate plasminogen (PG) to the plasmin (Pm) active site. Protein modelling studies indicated the crucial role of a loop in SAK (SAK 90-loop; Thr90—Glu100) for the docking of the substrate PG to the SAK—Pm complex. Function of SAK 90-loop was studied by site-directed mutagenesis and loop deletion. Deletion of nine amino acid residues (Tyr92—Glu100) from the SAK 90-loop, resulted in ≈60% reduction in the PG activation, but it retained the ability to generate an active site within the complex of loop mutant of SAK (SAKΔ90) and Pm. The preformed activator complex of SAKΔ90 with Pm, however, displayed a 50–60% reduction in substrate PG activation that remained unaffected in the presence of kringle domains (K1+K2+K3+K4) of PG, whereas PG activation by SAK—Pm complex displayed ∼50% reduction in the presence of kringles, suggesting the involvement of the kringle domains in modulating the PG activation by native SAK but not by SAKΔ90. Lysine residues (Lys94, Lys96, Lys97 and Lys98) of the SAK 90-loop were individually mutated into alanine and, among these four SAK loop mutants, SAKK97A and SAKK98A exhibited specific activities about one-third and one-quarter respectively of the native SAK. The kinetic parameters of PG activation of their 1:1 complex with Pm indicated that the Km values of PG towards the activator complex of these two SAK mutants were 4–6-fold higher, suggesting the decreased accessibility of the substrate PG to the activator complex formed by these SAK mutants. These results demonstrated the involvement of the Lys97 and Lys98 residues of the SAK 90-loop in assisting the interaction with substrate PG. These interactions of SAK—Pm activator complex via the SAK 90-loop may provide additional anchorage site(s) to the substrate PG that, in turn, may promote the overall process of SAK-mediated PG activation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3