Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore

Author:

McSTAY Gavin P.1,CLARKE Samantha J.1,HALESTRAP Andrew P.1

Affiliation:

1. Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, U.K.

Abstract

Opening of the mitochondrial permeability transition pore (MPTP) is sensitized to [Ca2+] by oxidative stress (diamide) and phenylarsine oxide (PAO). We have proposed that both agents cross-link two thiol groups on the adenine nucleotide translocase (ANT) involved in ADP and cyclophilin-D (CyP-D) binding. Here, we demonstrate that blocking Cys160 with 80μM eosin 5-maleimide (EMA) or 500μM N-ethylmaleimide (NEM) greatly decreased ADP inhibition of the MPTP. The ability of diamide, but not PAO, to block ADP inhibition of the MPTP was antagonized by treatment of mitochondria with 50μM NEM to alkylate matrix glutathione. Binding of detergent-solubilized ANT to a PAO-affinity matrix was prevented by pre-treatment of mitochondria with diamide, EMA or PAO, but not NEM. EMA binding to the ANT in submitochondrial particles (SMPs) was prevented by pre-treatment of mitochondria with either PAO or diamide, implying that both agents modify Cys160. Diamide and PAO pre-treatments also inhibited binding of solubilized ANT to a glutathione S-transferase—CyP-D affinity column, both effects being blocked by 100μM EMA. Intermolecular cross-linking of adjacent ANT molecules via Cys57 by copper phenanthroline treatment of SMPs was abolished by pre-treatment of mitochondria with diamide and PAO, but not with EMA. Our data suggest that PAO and diamide cause intramolecular cross-linking between Cys160 and Cys257 directly (not antagonized by 50μM NEM) or using glutathione (antagonized by 50μM NEM) respectively. This cross-linking stabilizes the ‘c’ conformation of the ANT, reducing the reactivity of Cys57, while enhancing CyP-D binding to the ANT and antagonizing ADP binding. The two effects together greatly sensitize the MPTP to [Ca2+].

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 313 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3