Fatty acid biosynthesis by a particulate preparation from germinating pea

Author:

Bolton Paul1,Harwood John L.1

Affiliation:

1. Department of Biochemistry, University College, P.O. Box 78, Cardiff CF1 1XL, Wales, U.K.

Abstract

1. Fatty acid synthesis was studied in microsomal preparations from germinating pea (Pisum sativum). 2. The preparations synthesized a mixture of saturated fatty acids up to a chain length of C24 from [14C]malonyl-CoA. 3. Whereas hexadecanoic acid was made de novo, octadecanoic acid and icosanoic acid were synthesized by elongation. 4. The products formed during [14C]malonyl-CoA incubation were analysed, and unesterified fatty acids and polar lipids were found to be major products. [14C]Palmitic acid represented a high percentage of the acyl-carrier protein esters, whereas 14C-labelled very-long-chain fatty acids were mainly present as unesterified fatty acids. CoA esters were minor products. 5. The addition of exogenous lipids to the incubation system usually resulted in stimulation of [14C]malonyl-CoA incorporation into fatty acids. The greatest stimulation was obtained with dipalmitoyl phosphatidylcholine. Both exogenous palmitic acid and dipalmitoyl phosphatidylcholine increased the amount of [14C]-stearic acid synthesized, relative to [14C]palmitic acid. Addition of stearic acid increased the amount of [14C]icosanoic acid formed. 6. [14C]Stearic acid was elongated more effectively to icosanoic acid than [14C]stearoyl-CoA, and its conversion was not decreased by addition of unlabelled stearoyl-CoA. 7. Incorporation of [14C]malonyl-CoA into fatty acids was markedly decreased by iodoacetamide and 5,5′-dithiobis-(2-nitrobenzoic acid). Palmitate elongation was sensitive to arsenite addition, and stearate elongation to the presence of Triton X-100 or fluoride. The action of fluoride was not, apparently, due to chelation. 8. The microsomal preparations differed from soluble fractions from germinating pea in (a) synthesizing very-long-chain fatty acids, (b) not utilizing exogenous palmitate–acyl-carrier protein as a substrate for palmitate elongation and (c) having fatty acid synthesis stimulated by the addition of certain complex lipids.

Publisher

Portland Press Ltd.

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3