Biological photovoltaics: intra- and extra-cellular electron transport by cyanobacteria

Author:

Bradley Robert W.1,Bombelli Paolo1,Rowden Stephen J.L.1,Howe Christopher J.1

Affiliation:

1. Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, U.K.

Abstract

A large variety of new energy-generating technologies are being developed in an effort to reduce global dependence on fossil fuels, and to reduce the carbon footprint of energy generation. The term ‘biological photovoltaic system’ encompasses a broad range of technologies which all employ biological material that can harness light energy to split water, and then transfer the resulting electrons to an anode for power generation or electrosynthesis. The use of whole cyanobacterial cells is a good compromise between the requirements of the biological material to be simply organized and transfer electrons efficiently to the anode, and also to be robust and able to self-assemble and self-repair. The principle that photosynthetic bacteria can generate and transfer electrons directly or indirectly to an anode has been demonstrated by a number of groups, although the power output obtained from these devices is too low for biological photovoltaic devices to be useful outside the laboratory. Understanding how photosynthetically generated electrons are transferred through and out of the organism is key to improving power output, and investigations on this aspect of the technology are the main focus of the present review.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3