Archaeal biofilms: widespread and complex

Author:

Fröls Sabrina1

Affiliation:

1. Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany

Abstract

Biofilms or multicellular structures become accepted as the dominant microbial lifestyle in Nature, but in the past they were only studied extensively in bacteria. Investigations on archaeal monospecies cultures have shown that many archaeal species are able to adhere on biotic and abiotic surfaces and form complex biofilm structures. Biofilm-forming archaea were identified in a broad range of extreme and moderate environments. Natural biofilms observed are mostly mixed communities composed of archaeal and bacterial species of various abundances. The physiological functions of the archaea identified in such mixed communities suggest a significant impact on the biochemical cycles maintaining the flow and recycling of the nutrients on earth. Therefore it is of high interest to investigate the characteristics and mechanisms underlying the archaeal biofilm formation. In the present review, I summarize and discuss the present investigations of biofilm-forming archaeal species, i.e. their diverse biofilm architectures in monospecies or mixed communities, the identified EPSs (extracellular polymeric substances), archaeal structures mediating surface adhesion or cell–cell connections, and the response to physical and chemical stressors implying that archaeal biofilm formation is an adaptive reaction to changing environmental conditions. A first insight into the molecular differentiation of cells within archaeal biofilms is given.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3