Role of stem-cell-derived microvesicles in the paracrine action of stem cells

Author:

Camussi Giovanni1,Deregibus Maria Chiara1,Cantaluppi Vincenzo1

Affiliation:

1. Department of Internal Medicine and Molecular Biotechnology Center, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy

Abstract

The paracrine theory has recently changed the view of the biological action of stem cells and of the subsequent potential application of stem cells in regenerative medicine. Indeed, most of the beneficial effects of stem-cell-based therapy have been attributed to soluble factors released from stem cells. In this context, MVs (microvesicles) released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, may play a relevant role in the intercellular communication between stem and injured cells. By transferring proteins, bioactive lipids, mRNA and microRNA, MVs act as vehicles of information that may lead to alteration of the phenotype of recipient cells. The exchange of information between stem cells and tissue-injured cells is reciprocal. The MV-mediated transfer of tissue-specific information from the injured cells to stem cells may reprogramme the latter to gain phenotypic and functional characteristics of the cell of origin. On the other hand, MVs released from stem cells may confer a stem-cell-like phenotype to injured cells, with the consequent activation of self-regenerative programmes. In fact, MVs released from stem cells retain several biological activities that are able to reproduce the beneficial effects of stem cells in a variety of experimental models.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3