Inactivation of sarcoplasmic-reticulum Ca2+-ATPase in low-frequency-stimulated muscle results from a modification of the active site

Author:

Matsushita S1,Pette D1

Affiliation:

1. Fakultät für Biologie, Universität Konstanz, Postfach 5560, D-7750 Konstanz, Federal Republic of Germany

Abstract

Molecular changes underlying the partial inactivation of the sarcoplasmic-reticulum (SR) Ca(2+-) ATPase in low-frequency-stimulated fast-twitch muscle were investigated in the present study. The specific Ca(2+)-ATPase activity, as well as the ATP- and acetyl phosphate-driven Ca2+ uptakes by the SR, were reduced by approx. 30% in 4-day-stimulated muscle. Phosphoprotein formation of the enzyme in the presence of ATP or Pi was also decreased to the same extent. Measurements of ATP binding revealed a 30% decrease in binding to the enzyme. These changes were accompanied by similar decreases in the ligand-induced (ATP, ADP, Pi) intrinsic tryptophan fluorescence. A decreased binding of fluorescein isothiocyanate (FITC) corresponded to the lower ATP binding and phosphorylation of the enzyme. Moreover, Pi-induced changes in fluorescence of the FITC-labelled enzyme did not differ between SR from stimulated and contralateral muscles, indicating that Ca(2+)- ATPase molecules which did not bind FITC were responsible for the decreased Pi-dependent phosphorylation, and therefore represented the inactive form of the enzyme. No differences existed between the Ca(2+)-induced changes in the intrinsic fluorescence of SR from stimulated and contralateral muscles which fit their similar Ca(2+)-binding characteristics. Taking the proposed architecture of the Ca2(+)-ATPase into consideration, our results suggest that the inactivation relates to a circumscribed structural alteration of the enzyme in sections of the active site consisting of the nucleotide-binding and phosphorylation domains.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3