Fluorescence and circular-dichroism studies on the Streptomyces R61 dd-carboxypeptidase–transpeptidase. Penicillin binding by the enzyme

Author:

Nieto Manuel1,Perkins Harold R.1,Frère Jean-Marie2,Ghuysen Jean-Marie2

Affiliation:

1. National Institute for Medical Research, Mill Hill, London NW7 1 AA, U.K.

2. Service de Microbiologie, Faculté de Médicine, Institut de Botanique, Université de Liège, Sart Tilman, 4000 Liège, Belgium

Abstract

The circular dichroism of the dd-carboxypeptidase–transpeptidase from Streptomyces R61 shows in the near u.v. a set of weak extrema at 289nm (positive) and at 282, 275 and 268nm (all negative). In the far u.v. it shows negative extrema at 217–218 and 208nm, crossover at 202nm and a positive maximum at about 194nm. The u.v. absorption of the enzyme shows it to contain tyrosine and tryptophan in approx. 3.4:1 ratio. The enzyme is fluorescent with a maximum emission at 318–320nm. The near-u.v. circular dichroism of the protein is extensively affected by binding of penicillin G, but the far u.v. is unaffected. Binding of the antibiotic also causes quenching of the fluorescence of the enzyme. The latter effect has been used to study the binding of penicillin G to the enzyme and the influence exerted upon it by salts, denaturants and peptide substrates and inhibitors. High-affinity binding of penicillin appears to be comparatively slow and reversible, and can occur under conditions in which the protein is enzymically inactive. The thermal denaturation of the enzyme in guanidinium chloride at pH7 is affected by binding of the antibiotic. The presence of even large concentrations of β-mercaptoethanol neither impaired the activity of the enzyme nor prevented its inhibition by penicillin G or cephalosporin C. A new hypothesis for the molecular mechanism of the interaction of the enzyme with penicillin is proposed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3